Jukka Takamaa

Mikä potkurihävittäjä olisi sinun "aseesi" ? ( R/C Air Combat )


140 viestiä aiheessa

Miksi pitää yrittää kisata kelvottomalla koneella? Toisaalta on se myös pilotin taidoistakin kiinni.. Juurihan tuli esille että Battlea on lennetty tehokkaammalla koneella kuin Bearcat'a. Iljyshiin'n maatappelukoneistakin löytynee varsin tehokkaita versioita. Jukka taitaa olla fakkiutunut johonkin tiettyyn juttuun näkemättä mitään muuta ja jutustelussa se näkyy. Valitettavasti. Pitäisikö järjestää myösoma golf-sarja, mallia suopursu?

 

Nyt Huoviala alkaa mennä persoonan puolelle...varo vähän ( vai onko nyt alkanut taas vaihe jossa threadi halutaan sulkea..luenko oikein ajatuksiasi ? ).

 

Ei kone ole kelvoton sitä yritän tässä juuri kertoa...vaan säännöissä on valtava porsaanreikä.

 

Bearcat on nimenomaan WW II kone ja niitä kamppailuja varten suunniteltu.

Jaa viesti


Link to post
Jaa muulla sivustolla

Jotenkin musta alkaa tuntua siltä, että ACES ei aio sallia Bearcattiin hieman isompaa .21 moottoria ( puhumattakaan Battleen sallittavasta .25:sta ).

 

Miksi lähteä ehdoin tahdoin kisoihin häviämään..sama kun laittais vanhainkodista mummon pelaaman jääkiekkoa NHL:n loppuotteluun jos lähtee 1/12 kokoisella katilla .15 moottorilla ACES kisoihin ( jossa siis kaksikertaa isommat koneet 2 x suuremmilla moottoreilla ajaa läpi pienemmästä 2x nopeampaa ).

 

http://en.wikipedia.org/wiki/Fairey_Battle

 

Terve!

 

On bearcatilla taidettu voittaa Suomen cupin kilpailuja. Ja on Bearcatti on ollut muistaakseni mukana kalustossa, kun Suomen mestaruuskin on voitettu. Ettei se nyt välttämättä ihan mopo Acesin säännöillä ole.

 

Toinen pointti on, ettei Bearcatti olisi välttämättä sen parempi isommalla moottorilla, koska silloin taas paino nousee väkisinkin. Lennokeilla tehon+painon lisäys ei varmastikaan vaikuta suhteessa samalla tavoin kuin oikeissa koneissa. Varsinkin ketteryydestä on taistelulennokeissa hyötyä. Ei niinkään siitä, kuinka nopea kone on (tiettyyn rajaan saakka).

 

Minun tuntuman mukaan Acesin säännöillä on tarkoituksena, että mahdollisimman moni kone olisi kilpailukykyinen. Näin kisoissa näkyy monenlaisia eri koneita.

 

terv. Mikko

Jaa viesti


Link to post
Jaa muulla sivustolla

Terve!

 

Minun tuntuman mukaan Acesin säännöillä on tarkoituksena, että mahdollisimman moni kone olisi kilpailukykyinen. Näin kisoissa näkyy monenlaisia eri koneita.

 

terv. Mikko

 

No Mikko terveppä terve !

 

Täytynee sitten tuunata tuota vielä ja saada siitä 700 grammanen 1/12 koossa ja aavistus pyöreyttä niin saa osallistua.

Paksuntaminen antaa mahdollisuuden saada isompi fuiletankki sisään..se ei ole huono asia välttämättä..ainakaan, jos ajaa hupia.

 

t. Juke

Jaa viesti


Link to post
Jaa muulla sivustolla

"Bearcat on nimenomaan WW II kone ..."

Paitsi että se ei osallistunut lainkaan siihen kapinaan.

 

Jos nyt puhutaan siitä kilpailukykyisyydestä RC Aircombatissa, niin siihen vaikuttaa ainakin 5 asiaa:

1. pilotti

2. pilotti

3. pilotti

4. moottori (teho+toimintavarmuus)

5. lennokki (ominaisuudet oman maun mukaan)

 

Sen Bearcatin hyvyys ei auta yhtään noihin kolmeen ekaan asiaan.

 

Lisäksi OS15CV-A moottoreilla ja ns. pienillä koneilla on pärjätty kisoissa ihan hyvin ja ne ovat täysin kilpailukykyisiä koneita. Esimerkiksi Ki-61 Hien ja Mustang koneita löytyy kotimaan kisoista ja välillä Bearcat, Bf-109, Brewster, jne. Minä olen niiden isompien koneiden kannattaja, mutta silti minulla oli kaikissa tämän vuoden kisoissa mukana myös Mustang yhtenä koneena.

 

t. Jyrki

 

Jaa viesti


Link to post
Jaa muulla sivustolla

"Bearcat on nimenomaan WW II kone ..."

Paitsi että se ei osallistunut lainkaan siihen kapinaan.

Minä olen niiden isompien koneiden kannattaja, mutta silti minulla oli kaikissa tämän vuoden kisoissa mukana myös Mustang yhtenä koneena.

 

t. Jyrki

 

Jep se ei vaikuta tähän.

 

Se on huomattu.

 

 

Entäs tämä ? Onko riittävän paksu ? 2 cm paksunnosta molemmilla puolilla...siis 2.8 cm yhteensä keskirungossa.

 

Tämän saattais juuri saada vielä samalla vaivalla taivutettua puusta.

 

[ attachment removed / expired ]

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Eikös se selviä originaalin lentokoneen kolmitahoihin verrattaessa. Ei kai kaikkea tarvi kysyä?

 

Joo löysin hyllystä Squadron Signal nro 99 opuksen ja muutamia muitakin muutoksia piti tehdä.

 

Kiitos Kimmolle..vanha 2003 tehty CAD kuva oli tosiaan päivityksen puutteessa.

 

 

Nyt runko on juuri 2 cm säännön puitteissa pienennetty.

 

[ attachment removed / expired ]

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Ei se Bearcatti aivan kelvoton nykysäännöilläkään tosiaan ole. En tiedä puhuiko Mikko itsestään vai minusta, mutta Mikolla on 2 suomenmestaruutta ja epäilisin että mukana hänellä on ollut Bearcattikin. Myös minulla on ensimmäisenä mestaruusvuotena ollut Bearcat kalustossa ja kyllä sillä tulostakin syntyi. Silti tykästyin isompiin koneisiin kun niillä on helpompi lentää ja eivät ole niin herkkiä pienille kopsuille tai streamerikasoille siiven päissä.

 

Kannattaa väsätä se catti kuntoon ja tulla kokeilemaan että onko se nyt sitten niin surkea :thmbup:

 

 

Rami Lehto: jokainen tyylillään, mutta potku alapäähän on vähän tylsä juttu..

 

 

Hyvää uuttavuotta kaikille!

Jaa viesti


Link to post
Jaa muulla sivustolla

Ei se Bearcatti aivan kelvoton nykysäännöilläkään tosiaan ole. En tiedä puhuiko Mikko itsestään vai minusta, mutta Mikolla on 2 suomenmestaruutta ja epäilisin että mukana hänellä on ollut Bearcattikin. Myös minulla on ensimmäisenä mestaruusvuotena ollut Bearcat kalustossa ja kyllä sillä tulostakin syntyi. Silti tykästyin isompiin koneisiin kun niillä on helpompi lentää ja eivät ole niin herkkiä pienille kopsuille tai streamerikasoille siiven päissä.

 

Kannattaa väsätä se catti kuntoon ja tulla kokeilemaan että onko se nyt sitten niin surkea :thmbup:

 

 

Rami Lehto: jokainen tyylillään, mutta potku alapäähän on vähän tylsä juttu..

 

 

Hyvää uuttavuotta kaikille!

 

Jep kiitos samoin. Ilmeisesti kuitenkin eri kisaajien samantyyppisetkin koneet eri foileilla ja rungon malleilla hieman lentää eri tavalla ?

 

http://koti.netplaza.fi/~aces/tulokset.htm

 

Rami lehto ei esiinny tuossa listassa..ilmeisesti liian narsisti kisaamaan ?

 

 

Jos en väärin muista Mikon katti oli hieman pienempi kuin 1/12..tuon pitäisi nyt olla juuri 1/12...siipiä vois vielä pidentää sen 5%.

 

Melkosta vääntöä siellä ACES kotisivuillakin eri maiden edustajien kesken säännöistä. Norjalaisia ei ole näkynyt 1999 jälkeen kisoissa...miksiköhän ?

Jaa viesti


Link to post
Jaa muulla sivustolla

Mikä olisi realistinen nopeus Air Combat koneelle.

 

Alla neuvonpitoani asiasta scalepuolella.....alan asiantutija Kent Walters kirjoittaa ( selvittää omaa teoriaansa ):

 

Jukka,

 

Thanks for your email inquiry. I reviewed the information you referenced

at: http://www.rcscalebuilder.com/forum/forum_posts.asp?TID=3373&PN=1

This forum included your described theory and variation on the "cubature

rule" for weight and power. In your email below, you proposed a cooperation

relative to my article on Maneuver Realism Speed or what has also been historically

identified as Dynamic Similitude Speed or "DSS" since you had noticed your

models fly in that same manner. This is article is at:

http://www.scaleaero.com/maneuver_realism_speed.htm

My article is based on similar practical observations in modeling, but

more importantly on the overall physics for maneuver realism features. In that

same respect, the best way to evaluate your theory is by also comparing it with

the same type of physical sciences. For describing these relations, we will

use exponents for scale where (for example) the cubature rule is the exponent

3. If the scale is 1/10, that simply means the value of 1/10 is cubed or

taken to the exponent 3 where we would have: 1/10 x 1/10 x 1/10 = 1/1000 for the

scaling relationship. The most simple scaling method is to "exponent 1" for

dimensions when we build the model to the scale desired such as 1/10 in the

above example. With those initial definitions, the following detailed description

is provided to better answer your question.

The "cubature" rule that you mentioned (scale to the exponent 3) for

scaling weight on items of smaller dimensional size such as models has been well

known for many years by engineers. For example, if you were to use a "magical

reduction machine" for a full-size aircraft to shrink all of its dimensions

(height, length, width) to the scale size you wanted, the cubic relation is what

would apply for the final weight with the same materials of the airplane.

However it is not directly used by scale modelers for a variety of reason,

particularly since it suggests using heavier weight models than many feel

comfortable flying. I suspect it may only be just one of many features that are only of

casual or "academic" interest for comparison after carefully building the

model to the correct scale size. Nevertheless it can still affect how it flies.

One reason for having lower weight is to delay the occurrence of stalls as

speeds are reduced, particularly since we cannot scale another physical

characteristic feature of the air media we fly in identified as Reynolds Number

(RN). The value of RN is greatly reduced by smaller size models at lower speeds.

Reynolds Number (RN) is a measure of how well the airflow "sticks" to the

wing profile in flight before separating and becoming turbulent at higher

angles of attack. The higher the RN value, the better the airflow sticks to the

wing profile for desired lift. If RN declines below critical values, the air

flow separates and a stall occurs.

This important RN is mathematically proportional to both the wing chord

size and the speed through the air. When these are both reduced for smaller

size scale models, it produces much lower values of RN. It is also a means of

better recognizing we cannot scale the air media we fly in (or distance between

air molecules) and its dynamic-flow-effects around wings. However NASA has

done such things with pressurized wind-tunnel tests for greater air density to

produce comparable RN values to full-size when using smaller size models.

This lower RN effect can make it difficult to fly with heavier weights as

calculated with exponent 3 in scaling from full size. The most difficult

examples are very heavy wing loaded WW2 fighters and jets that I believe was

recognized in the forum you wanted me to review. Nevertheless some modelers can

still approximate it for a variety of other models using good judgment in

piloting and Dynamic Similitude Speed (DSS). This has also been described as

"Maneuver Realism Speed" in the article by that name referenced previously.

That same article also recognizes we cannot scale or change the

accelerating-pull effects of gravity. When acceleration qualities are fixed for similar

motion effects in modeling, it also provides a further mathematical relation

that helps determine the correct speed conversion for realistic maneuvers with

correct G-loading appearance, bank angle attitudes in scale-size turns, and a

variety of other realistic expectations despite how light a model may be in

weight. It also provides a relation for the time or tempo of events for

overall "maneuver realism speed" in flight.

In contrast to weight, the relation for scaling "power" in physics is to

the exponent of 3.5 rather than 3. You can better understand it by specific

measured features for power. Power is the rate of doing Work that can be put in

terms of the force (thrust) that is multiplied by distance and divided by

time. Since distance is scaled linearly (exponent 1) and force is scaled in a

cubature manner (exponent 3) similar to weight, the product of the two items is

scaled to the exponent 4. The "time" is scaled as the square root of scale

(exponent 0.5) as also explained in the Maneuver Realism Speed article. When

dividing the force and distance by time to determine the power effects, we have

power that scales to the exponent of 3.5. Please recognize that the

individual scaling exponents are added when multiplying them and subtracted when

dividing for determining the overall scaling effect.

This power relation is very close to the example conversions you are

making if I understand your method correctly. You use the scale "cubature"

(exponent 3), and then further multiply the resulting denominator of that cubic

scaling operation by two or three for approximating both power and weight. This

method will approximate the scale exponent of 3.5, particularly for scale sizes

that are typically in the order of 1/4 to 1/9 scale where the exponent 0.5

(square root) of 1/4 is 1/2 and similarly for 1/9 is 1/3. We are dealing only

with the scale denominator in the manner you have multiplied by 2 or 3.

As described earlier, using this same scale exponent 3.5 conversion for

weight is not a correct scaling method to smaller dimensional sizes. It should

instead be with the scale exponent 3. However when also applying the exponent

of 3.5 to reduce the weight further (similar to your method for weight

conversion by further multiplying the cubic scale denominator by 2 or 3), it may

often better approximate what many scale aircraft weigh when completed.

Many of these building disciplines in weight are also personal preferences

by modelers rather than by science or mathematical relations. Some prefer to

build as light as possible to avoid stalls despite other possible effects in

flight characteristics. This includes how easily wind can affect very

lightweight models or how they may react unrealistically when deploying higher lift

controls such as flaps. This reaction may be excessive (sometimes called

"ballooning") that can also make final approach to landings more troublesome.

Rather than flaps helping the aircraft land in a predictable approach to the

runway, some "lightweight" model builders have viewed flaps as making it more

difficult. When that observation is made, something is obviously wrong in expected

realistic flight features of the scale model that can also often relate to

inadequate weight.

I suspect that more experienced scale modelers (including those in

competition) that have recognized these problems or tradeoffs may not be so stingy in

building materials depending on what vintage aircraft they are modeling and

the piloting skills they have. I have to say that carefully since you cannot

simply tell the average scale modeler to go out and build heavier for greater

flight realistic effects (if you get my drift). This unusual type of

"discipline" for being somewhat more generous with weight must also include very

careful initial setup of the model including correct CG, incidence angles, wing-tip

washout (if applicable), engine reliability, control-surface setup, etc.

Unless all these features are correct (and reliable), the probability of survival

declines with heavier models.

Your method of determining power and weight does not question or

contradict the "Maneuver Realism Speed" or DSS found in the article earlier mentioned.

As you indicated, your models "seem to fly at DSS speeds." That article was

based on speed required for all maneuver flight realism features for

scale-size maneuvers including correct G-loading appearance, correct attitudes in

flight, correct bank angles in turns, realistic maneuver choices, energy management

for realistic vertical maneuvers (if applicable), and better stability to

avoid stalls. That relationship using the square-root of scale (exponent 0.5 of

scale) is fundamentally determined by the physics to maintain the same

accelerating qualities for realistic maneuvers such as achieving the same G-loading

appearance as in full-size. In other words, the acceleration qualities in

various motion effects is the only feature between full-size and scale models that

do not scale (exponent 0) and is also reflected in the constant accelerating

pull of gravity that also cannot be scaled.

This "fundamental" speed relation for scale-size maneuvers cannot be

achieved by flying at slower "scale speeds" or building very light in weight.

Those slower scale speeds can also easily stall the model. As described earlier,

the important RN value is proportional to both the wing chord size and speed.

Therefore the RN is not a fixed number for a scale model. The slower the

speed the lower the RN becomes where dangerous stalls then easily occur.

This square-root of scale relation for speed also applies to time or tempo

of events that I believe was also mentioned in the earlier communications you

wanted me to review. This change to quicker tempo of events for smaller size

animated objects is also further exemplified in the Maneuver Realism Speed

article.

As Ed Clayman indicated, you have to read the entire article to get a full

appreciation of what is occurring for accurately comparing maneuvers between

full-size and their smaller scale model replica. This includes the use of

correct full-size aircraft maneuvering speed comparisons at or near sea level (as

performed in airshows) rather than reference the frequently advertised

maximum rated speeds at high altitudes. The "impressive" maximum speed ratings are

often described for high performance WW2 fighters or jets, but do little as

realistic reference for using the correct square-root of scale conversion in

speed for the typical maneuvers that models perform.

It is also interesting to point out that a full-size airplane that would

fly through the same maneuver sequence as the model would take two or three

times longer in time to fly compared to the approximate 7 to 11 minute time (as

in scale competition) for typical models in 1/9 to 1/4 scale sizes flying with

"Maneuver Realism Speed" or DSS. If a model could fly at slower "scale

speeds" and not stall, then the time to fly the scale model through all of its scale

size maneuvers would be identical to the full size. That is because slower

"scale speeds" make the assumption that only distance is scaled for determining

the model speed but not the time or tempo at which that scaled distance is

traveled. Obviously that assumption is incorrect and there is a scaling factor

in time as well for smaller replicas that duplicate all the other realistic

features in dynamically similar motion effects.

Since speed is distance divided by time where distance scales to the

exponent 1 and time to the exponent 0.5 (as earlier described), we then find that

Dynamically Similar Speed (DSS) also scales as the exponent 0.5 or the

square-root of scale with the mathematical methods for exponents described earlier.

In summary, your described method of determining power for a scale model

is very close to what is justified by the physical sciences since it also

approximates the scale to exponent 3.5 for the correct technical conversion. Your

similar method for the weight conversion is somewhat low compared to

recognized physical sciences that indicate the scale to the exponent 3 is the correct

conversion. However your described method is understandable when compared to

many examples in the modeling community and considering the handicaps of scale

models operating at much lower Reynolds Number compared to full size. Suffice

it to say there are likely many other variations to these examples in

modeling that simply reflect personal preferences among modelers.

I trust this has been of assistance if you wanted a more scientific or

mathematical explanation for what you inquired about relative to the prevailing

physics.

 

Regards, Kent Walters, USSMA Technical Director

 

 

--------

 

Eli kartasta täällä : http://www.scaleaero.com/maneuver_realism_speed4.htm

 

Mustangit ja viimeiset Mersumallit pitäsi lentää 1/12 koossa noin 100 -110 mph ( 160 - 180 km/t ), jotta ns. DSS ( dynamic similitude speed ) nopeudet toteutuisivat. Jotkut .42:lla varustetut tuon kokoiset musset lentää jopa 150 mph joka vastaa noin 800 km/t oikeata nopeutta.

 

Ns yksinkertainen skaalanopeus olis 650 km/t /12 eli n 55 km/t...näin hitaasti kompattikoneet ei lennä.

 

Kisoissa koneet lentää noin 100 - 150 km/t.

 

 

Alla OS C-VA:n .15 ( 2.5 cm ) antamat potkurin etenemisopeudet ja niillä saavutettu thrust eli työntövoima.

 

[ attachment removed / expired ]

 

 

[ attachment removed / expired ]

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Mutta ei kai mikään aikuisten oikea lentokone lennä taistelutilanteessa ja kurvatappelussa lähelläkään maksiminopeuttaan?

 

-Reijo-

Jaa viesti


Link to post
Jaa muulla sivustolla

Jep ei lennäkkään ..ohjausvoimat käy mahdottomiksi jne.

 

300-350 mph Mustangilla.

 

Muistan että 1990 kellotettiin 1/12 kokoiselle FW-190 D:lle 150 km/t "poliisitutkalla". Lindberg/Pikkusaari ja kaverit.

 

---------

 

Reno koneet lentää n. 500 mph suorilla;

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Kenellä on eniten pisteitä yhteensä ja kuka on " törmäillyt " eniten ? Onko kukaan rakentanut vielä 100:aa kompattikonetta ?

 

Muistaakseni Timo Å:lla oli jo yli 30 "ilmavoittoa".

 

;D

 

:thmbup:

 

t. Jukka

 

( the first mersu pilot )

Jaa viesti


Link to post
Jaa muulla sivustolla

Tosiaan kertaalleen vielä äänestyksen tulokset:

 

 

Spitfire  - 16 (17.2%)

P-51D Mustang - 19 (20.4%)

Messerschmitt 109 F/G - 16 (17.2%)

Mitsubishi A6M5 Zero - 2 (2.2%)

Yak-3 - 1 (1.1%)

FW 190 A-3 - 9 (9.7%)

Brewster F2A-1 - 5 (5.4%)

Ki-43 Hyabusa - 1 (1.1%)

IAR 80 - 0 (0%)

Tempest V - 2 (2.2%)

Ta-152 H - 3 (3.2%)

P-63 Kingcobra - 0 (0%)

F6F Hellcat - 0 (0%)

P-38 Lightning - 1 (1.1%)

Me 262 Swalbe - 2 (2.2%)

Do 335 "Anteater" - 0 (0%)

La-5 - 2 (2.2%)

Mc 205 Veltro - 0 (0%)

I-16 Rata - 0 (0%)

F4U-4 Corsair - 2 (2.2%)

FW 159 - 0 (0%)

FW 190 D-9 " Langnase" - 2 (2.2%)

Ki-100 ( type 5 fighter ) - 0 (0%)

Me 163 Komet - 0 (0%)

Hawker Hurricane - 2 (2.2%)

Grumman Wildcat - 0 (0%)

Westland Whirlwind - 0 (0%)

Myrsky - 1 (1.1%)

P-47 Thunderbolt - 0 (0%)

Mc 202 Folgore - 0 (0%)

Il-2 - 1 (1.1%)

Ar-234 - 0 (0%)

Westland Welkin - 0 (0%)

He-100D - 0 (0%)

Ki-61 Tony - 1 (1.1%)

P-66 Vanguard - 0 (0%)

Wright Demon - 0 (0%)

F8F-1 Bearcat - 1 (1.1%)

Mitsubishi Raiden - 1 (1.1%)

Kyushu J7W1 Shinden - 0 (0%)

P-40 Kittyhawk - 0 (0%)

N1K2-J Shiden-Kai - 0 (0%)

Ki-84 - 0 (0%)

Fairey Battle - 0 (0%)

Boulton Paul Defiant - 0 (0%)

Vultee Vengeance - 0 (0%)

Il-10 - 0 (0%)

Me-110 - 0 (0%)

Me-410 - 0 (0%)

Nakajima B6N - 0 (0%)

P-39 Airacobra - 0 (0%)

PZL-11 - 0 (0%)

Henscel 129 - 0 (0%)

FW-189 - 0 (0%)

Fiat G-50 - 0 (0%)

Morane Saulnier MS 406 - 0 (0%)

Caudron 714 - 0 (0%)

P-36 Curtiss A-75 Hawk - 0 (0%)

Bell XP-77 - 0 (0%)

Mig-3 - 1 (1.1%)

Fairey Firefly - 0 (0%)

Ryan Fireball - 0 (0%)

Dh Vampire Mk.1 - 0 (0%)

Bristol Bulldog - 0 (0%)

Gloster Gladiator - 0 (0%)

I-153 Tchaika - 0 (0%)

Supermarine Spiteful - 0 (0%)

C-3603 - 0 (0%)

Saab J-22 - 0 (0%)

Dh Mosquito - 0 (0%)

Dh Hornet - 0 (0%)

Saab A 21 - 0 (0%)

SAI S.403 Dardo - 0 (0%)

Me-309 - 0 (0%)

Vickers Wellesley - 0 (0%)

Avia 199 - 0 (0%)

BV-155 - 0 (0%)

Avia B.35.3 - 0 (0%)

Fokker D XXI - 0 (0%)

Lagg-3 - 0 (0%)

Imam Ro 57 - 0 (0%)

Commonwealth Boomerang - 0 (0%)

Ki-64 - 1 (1.1%)

Rogozarski IK-3 - 0 (0%)

Vought V-143 - 0 (0%)

P-35 Seversky - 0 (0%)

Dewoitine 520 - 0 (0%)

VL Pyörremyrsky - 0 (0%)

XP-55 Ascender - 0 (0%)

Hawker Sea Fury - 0 (0%)

Yak-4 - 0 (0%)

FW-187 - 0 (0%)

He-112 - 0 (0%)

Potez 630 - 1 (1.1%)

Bloch 155 - 0 (0%)

NC-600 - 0 (0%)

VG-33 Arsenal - 0 (0%)

VEF I-16 - 0 (0%)

XP-75 Fisher Eagle - 0 (0%)

CA-15 Kangaroo - 0 (0%)

MB-5 - 0 (0%)

Renard R-37 - 0 (0%)

P-70 - 0 (0%)

He-219 UHU - 0 (0%)

Blackburn Skua - 0 (0%)

Blackburn Roc - 0 (0%)

Su-7 - 0 (0%)

XF5F Skyrocket - 0 (0%)

 

Total Votes: 93

 

18 konetyyppiä sai ääniä Saksa, Usa ja Englanti sekä Japani ja USSR etunenässä. Tuosta voi vetää ainakin joitakin johtopäätöksiä, että jos uusia harrastajia haluaa lajiin niin Thun C-3603 ja Fairey Battle eivät tule ekaksi mieleen ilmailijoilla, kun lennettävää mallia valitaan.

 

 

Hyvä puinen Brewsteri sarja odottaa vielä tekijäänsä.

Jaa viesti


Link to post
Jaa muulla sivustolla
Vieras
Tämä aihe on nyt suljettu uusilta viesteiltä.