Peter Lord

Sivutuulilasku DA40:lla

50 viestiä aiheessa

Nyt saat varmaan sätkyn Peter, mutta otan sen riskin. Ei riitä, että opettelee sivutuulilaskun uudestaan pitkäsiipisellä pienkoneella tai monimoottorisella liikennekoneella. Eräs moderneja Long Range-liikesuihkuja lentävä ystäväni kertoi, ettei niillä koneilla voi enää tehdä vanhanajan vedettyjä laskujakaan. Juuri siksi että siivenkärki ottaa maahan jo pienelläkin kallistuksella. Mutta eihän ihminen ole koskaan liian vanha oppimaan, eihän.

 

Seppo 

Jaa viesti


Link to post
Jaa muulla sivustolla

DA40:llä nyt muutaman kymmenen tuntia lentäneenä se on ainakin todella vakaa sivutuulilaskuissa. Kymmenen-viisitoista solmua sivusta ei oikeastaan tunnu vielä mitenkään verrattuna vaikka C172:teen. Laskun voi tehdä ihan normaalisti ja lähes suoraan. Monesti yllättynyt siitä että tuulilukemien perusteella odottaisi joutuvansa tekemään paljon enemmän töitä kuin todellisuudessa.

 

En kyllä tiedä että miten ihmeessä sillä voi siiven maahan kiinni saada.... Tai kai kaikki on mahdollista jos oikein yrittää. Meillä täällä Länsi-Suomessa ei mitään erityistä sivutuuli-ohjeistusta ole näkynyt.

Jaa viesti


Link to post
Jaa muulla sivustolla

Jonkin verran olen istunut moisessa aparaatissa vasemmalla puolella ja jonkin verran myös oikealla puolella. Toki pitkät siivet pitää huomioida, mutta eivät ne toki NIIN pitkät ole, etteikö kallistaminen laskussa onnistuisi. Etenkään kun kallistusta ei kohtalaisiin sivutuulilukemiin asti tarvita kovin paljon.

 

Koulutuksessa asiaan voi toki vaikuttaa se, mihin ollaan kouluttautumassa. Jos tähtäimenä on isojen poikien kone (kuten joissain FTO:issä on tapana) niin se voi toki vaikuttaa ajatusmaailmaan. Pyssy-yhtiökin käsittääkseni opettaa sivutuulilaskut korjauskulmalla loppuun asti ihan alkeiskalustollakin, koska hävittäjillä se on sitten se ainoa oikea tapa. Voipi korjata jos olen väärässä. Sitä on joskus melkein tapahtunut.

 

Jollei nyt asiassa kulttuurivallankumousta toteuteta niin pitäydyn edelleen kummallakin penkillä omaksumassani tavassa, josta Peter ja Laukkasen kaima tuossa puhuivat, ja jolla tuossa elävässä kuvassa päästiin Hankoon ihan ehjin nahoin. Jotenkin vaan laskun jälkeen koneen istuessa kiitotielle on miellyttävämpää kun runko on valmiiksi suorassa. Etenkin siellä Hangossa.

Jaa viesti


Link to post
Jaa muulla sivustolla

Tuosta kolmitahopiirroksista kun (rukkastuntumalla) katsoo niin PA28 voi olla noin kolme astetta enemmän pokallaan kunnes ollaan siivenkärki maassa. Ero siis on olemassa, mutta on hyvä kysymys onko tuo merkittävää. Ei se silmämääräisesti vaikuta kauhean isolta.

 

da40-pa28-c172-poka.png

 

C172  :thmbup: 

 

Kuvat on otettu kuvaruutukaappauksina käsikirjoista joten epätarkkuuksia lienee, tosin kukaan nyt ei varmaankaan ihan asteen tarkkuudella näitä kallistele ;D Ompas muuten tuossa Cessnan kuvassa muuten aika pieni maavara potkurilla.. liekö paineet iskarista karanneet... ;D

 

//Tuomas

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Ilman mittakaavapiirroksia sun muuta rekvisiittaa laskeskelin päissäni purtsikoille pienimmillään luokkaa 5-6 astetta

 

hannu

Jaa viesti


Link to post
Jaa muulla sivustolla

Kaava: sin(kallistuskulma) = siiven kärjen korkeus / siiven pituus. Kuvasta ei kumpikaan mitta selviä.

 

Jos kuva on mittakaavassa, niin päätelineen ulkoreunasta siiven kärkeen on 21 ruutua sivusuunnassa ja korkeutta 3 ruutua.

Tällöin toki oikea trigonometrinen funktio on tangentti

 

arctan(3/21) = 8,1°

 

Eli noin suurinpiirtein osapuilleen kahdeksisen astetta

Jaa viesti


Link to post
Jaa muulla sivustolla

No kas, puuhastelin teekuosmas-metodein - hieman vähemmän tyylikkäällä toteutuksella tosin - tuollaisen kuvatestin. Pääsin aika pitkälti samoihin lukemiin. Oiskohan se ollut 7,8 astetta, mutta ollaan jo kaukana toleranssien ulkopuolella.

 

[ attachment removed / expired ]

 

A-mallin 60 senttiä lyhyemmällä kärkivälillä voinee kallistaa ihan pikkisen enemmän. Siinä on purjekonetyyliin kulutuspalat ja niiden käyttäminen maassa onnistuu livenä ihan nätisti. Mainittakoon, ettei normaalioperoinnissa ole tullut tarpeeseen minkäänlaisissa sivutuuliolosuhteissa. Demomielessä se kuului opekurssin ohjelmaan ja samoin asiaa on joskus tullut nurmella demotuksi edelleen. Tosin tuo kannuksen korkeus vaihtelee toista metriä lentotilasta riippuen, joten vaihtelee myös siivenkärjen etäisyys maasta ollen kuvatunkaltaisessa tilanteessa hieman ylempänä etenemissuuntaan nähden kuin kannus maassa.

 

-A-

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Jos kuva on mittakaavassa, niin päätelineen ulkoreunasta siiven kärkeen on 21 ruutua sivusuunnassa ja korkeutta 3 ruutua.

Tällöin toki oikea trigonometrinen funktio on tangentti

 

arctan(3/21) = 8,1°

 

Eli noin suurinpiirtein osapuilleen kahdeksisen astetta

 

Olisiko kuitenkin arcsin ;) Kallistapa konetta niin, että siivenkärki ottaa maahan, niin eikös silloin se siipi ole kolmiossa hypotenuusa? Voit vaikka ajatusleikkinä ottaa metrin pituisen siiven, joka on metrin korkeudella. Arc tan mukaan se kopsahtaisi maahan 45 asteen kulmassa, mutta tosiasiassahan sen pitäisi olla 90 asteen kulmassa osuakseen.

 

No niin tai näin, arcsin=8,2 eli onneksi pienillä kulmilla sini on jotakuinkin yhtä paljon kuin tangentti :)

 

hannu

Jaa viesti


Link to post
Jaa muulla sivustolla

Jos loppuvedossa kallistusta on luokkaa 15+ astetta, niin siivenkärki taitaa olla pienin murheista siinä lähestymisessä?

 

Jaa viesti


Link to post
Jaa muulla sivustolla

Vai olisko kuitenkin niin, että homma ei ratkea v-kulmaan asettua siipeä hypotenuusana käyttäen? Koneen kallistuskulmaahan tässä haetaan. :)

Näkynee tuosta kuvatuksestakin.

 

-A-

Jaa viesti


Link to post
Jaa muulla sivustolla

Mutta siis, onko tässä nyt kyse siitä että mystinen "fto" on jostain syystä halunnut välttää laminointitöitä siiven kärjissä ja päättänyt ohjeistaa laskemaan toisella tavalla? Ehkä siivet ovat käytännössä kolisseet vaikka todistimmekin yllä heidän olevan väärässä ja sen olevan mahdotonta?  ;D

 

//T

Jaa viesti


Link to post
Jaa muulla sivustolla

Olisiko kuitenkin arcsin ;) Kallistapa konetta niin, että siivenkärki ottaa maahan, niin eikös silloin se siipi ole kolmiossa hypotenuusa? Voit vaikka ajatusleikkinä ottaa metrin pituisen siiven, joka on metrin korkeudella. Arc tan mukaan se kopsahtaisi maahan 45 asteen kulmassa, mutta tosiasiassahan sen pitäisi olla 90 asteen kulmassa osuakseen.

 

En oikein pysy kärryillä. Kun kone on maassa vaakasuorassa, niin silloinhan siiven alle jää suorakulmainen kolmio, jossa pystysuora kateetti on siivenkärjen korkeus maasta, vaakasuora kateetti on siivenkärjen vaakasuora etäisyys sen puoleisesta laskutelineestä ja hypotenuusa on vinottainen etäisyys siivenkärjestä laskutelineeseen.

 

Laskutelineen kohdalla oleva terävä kulma määrittää silloin maksimikulman, jonka verran konetta voi kallistaa ko. laskutelinettä tukipisteenä käyttäen, ennen kuin siivenkärki ottaa kiinni maahan. Tämä kulma lasketaan noista mitoista (3 ja 21 ruutua) nimenomaan arkustangentilla.

 

Jos yrität laskea suorakulmaisen kolmion tuosta edellisellä sivulla näkyvästä tilanteesta jossa kone on jo kipattu, tarvitset ensinnäkin kaksi kolmesta seuraavasta suureesta: 1) siivenkärjen ja laskutelineen etäisyys 2) siiven pituus siihen pisteeseen asti, joka on kipatussa koneessa täsmälleen laskutelineen yläpuolella ja 3) em. pisteen korkeus laskutelineen yläpuolella.

 

Mikään noista kolmesta suureesta ei käy kovin suoriltaan ilmi ruutukuvion päälle piirretystä kolmitahopiirroksesta, ja vaikka kävisi, niin tuosta kolmiosta ei voisi laskea paljonko konetta voi kallistaa vaakasuorasta asennosta, koska siivellä on V-kulmaa, kuten Antti totesi.

 

:)

Jaa viesti


Link to post
Jaa muulla sivustolla

En oikein pysy kärryillä. Kun kone on maassa vaakasuorassa, niin silloinhan siiven alle jää suorakulmainen kolmio, jossa pystysuora kateetti on siivenkärjen korkeus maasta, vaakasuora kateetti on siivenkärjen vaakasuora etäisyys sen puoleisesta laskutelineestä ja hypotenuusa on vinottainen etäisyys siivenkärjestä laskutelineeseen.

 

 

Joo seison korjattuna, ajatus karkasi huolimatta matemaattisesta pohjakoulutuksesta (-kosketuksesta) :/

 

Onneksi pienillä kulmilla ne ovat edelleen jotakuinkin samat, niin purtsikassa ei ole tästä virheestä johtuen siipi maahan napannut (muista syistä kylläkin ;))

 

hannu

Jaa viesti


Link to post
Jaa muulla sivustolla

No on tekllä väittelyaiheet. Olipa sin tai tan mitä tahansa. on muistettava että kone on kummassakin laskeutumistavassa hetken sivuluisussa. Tuohan on ihan ok kun tietää sivuluisun merkityksen ja menettelee sen mukaan.

Helpointahan olisi jos lentokentät olisivat pyöreitä ja koneen kaikki telineet varustettu ostoskärryn pyörillä.  :laugh:

Jaa viesti


Link to post
Jaa muulla sivustolla

No on tekllä väittelyaiheet. Olipa sin tai tan mitä tahansa. on muistettava että kone on kummassakin laskeutumistavassa hetken sivuluisussa. Tuohan on ihan ok kun tietää sivuluisun merkityksen ja menettelee sen mukaan.

Helpointahan olisi jos lentokentät olisivat pyöreitä ja koneen kaikki telineet varustettu ostoskärryn pyörillä.  :laugh:

 

Niin, ei pidä olettaa että tuo trigonometria liittyisi mitenkään sivutuulilaskuihin. Jos kysytään että paljonko tietyn kolmitahopiirroksen mukaista lentsikkaa voi kallistaa, niin se ei ole mielipidekysymys ja faktoja on helppo latoa tiskiin. Siksi puhuinkin siitä, enkä sivutuulilaskuista.

 

Jos niistä on pakko puhua oikeuttaakseen matikkahöpinät, niin todetaan sitten että itse olen tehnyt kaikki sivutuulilaskuni siivet vaakasuorassa tai ainakin melkein vaakasuorassa ja yrittämällä välttää ylittämästä tuota edellä laskettua kulmaa, joka purtsikalla taitaa olla vielä vähemmän kuin 8 astetta.  :)

Jaa viesti


Link to post
Jaa muulla sivustolla

Jos niistä on pakko puhua oikeuttaakseen matikkahöpinät, niin todetaan sitten että itse olen tehnyt kaikki sivutuulilaskuni siivet vaakasuorassa tai ainakin melkein vaakasuorassa ja yrittämällä välttää ylittämästä tuota edellä laskettua kulmaa, joka purtsikalla taitaa olla vielä vähemmän kuin 8 astetta.  :)

 

Siitä tosiaan laskeskelin arvoja luokkaa 5-6 astetta, ehkä joskus jopa allekin - kummallakin funktiolla sama tulos ;D

 

hannu

Jaa viesti


Link to post
Jaa muulla sivustolla

Voikos tällä tulla isolla kallistuksella kunhan oikaisee laskun jälkeen ja jarruttaa suuremmin vasta sen jälkeen? :)

 

 

Periaatteessa varmaankin. Miten siiveketehot siihen oikaisuun sitten riittävät on toinen juttu, monet avoimen luokan koneet tuppaavat (kuulemma) olemaan varsin laaaiiisskoooojaaaa siivekkeistään käsin :)

 

Toisaalta ajatus telemarkista tulla siivellä ei kauheasti innosta, voi tulla kalliiksikin, joten en taitaisi muutenkaan kokeilla ;)

 

hannu

Jaa viesti


Link to post
Jaa muulla sivustolla

Luo uusi käyttäjätunnus tai kirjaudu sisään

Sinun täytyy olla jäsen osallistuaksesi keskusteluun

Luo käyttäjätili

Rekisteröi uusi käyttäjätili helposti ja nopeasti!


Luo uusi käyttäjätili

Kirjaudu sisään

Sinulla on jo käyttäjätili?


Kirjaudu sisään